Современником Никомаха надо считать астронома и геометра Менелая Александрийского, который написал трактат о сферических треугольниках, явившихся в свое время как бы фундаментом сферической геометрии.
c. Клавдий Птолемей
Ко II в. относится деятельность Клавдия Птолемея. Он работал главным образом в области астрономии, причем его астрономические наблюдения относятся ко времени между 125 и 151 г Как астроном Птолемей разработал геоцентрическую систему мира, согласно которой Земля неподвижно покоится в центре мира, а все небесные светила движутся вокруг нее. Эта система была опровергнута Н. Коперником в его гелиоцентрической системе мира, полагающей, что центром Вселенной является Солнце, вокруг которого обращаются Земля и другие планеты, причем все планеты вращаются вокруг своих осей). В своих работах он невольно сталкивался с понятиями тригонометрического характера, а потому ему удалось внести значительный вклад и в развитие тригонометрии. В своих астрономических работах Птолемей уже не разделял часы на дневные и ночные, как это делали египтяне, а считал их равными по своей продолжительности. Окружность он разделял на 360 градусов, и каждый градус делил еще пополам. Диаметр же окружности он делил на 120 градусов, полагая, таким образом, что длина окружности в 3 раза больше ее диаметра; при этом каждый градус диаметра подразделял на 60 равных частей, а каждую из этих частей вновь разделял на 60 частей. В более позднее время эти подразделения градуса получили у римлян наименования partes minutae primae и partes minutae sekundae, что в переводе означает «части меньшие первые» и «части меньшие вторые». От этих латинских слов нами и заимствованы названия для единиц измерения углов и времени — минута и секунда.
Главная работа Птолемея называлась «Великое математическое построение астрономии в XIII книгах» или сокращенно «Мэгистэ» (в пер. с греч. «величайшая»). В историю она вошла под названием «Альмагест», которое дали ей впоследствии арабы.
В «Альмагесте» Птолемей вычисляет величины хорд всех дуг от 0° до 180о, причем значения хорд даны для дуг через каждую 1/2°. Для выполнения этой работы Птолемей вводит свою теорему, которая в истории математики носит название теоремы Птолемея и формулируется так: «произведение длин диагоналей вписанного в круг четырехугольника равно сумме произведений длин его противоположных сторон». Из этой теоремы Птолемей подучил следствия, позволяющие по данному диаметру окружности и по двум хордам, стягивающим дуги a и b, вычислить хорды, стягивающие дуги a + b и a - b. Пользуясь полученными соотношениями, также используя уменье вычислять стороны вписанных в круг правильных фигур (треугольника, квадрата, пятиугольника, шестиугольника и десятиугольника). Птолемей составил свою таблицу хорд, предшественницу современных таблиц синусов.
В истории математики Птолемей известен также тем, что он первый усомнился в очевидности постулата Евклида о параллельных прямых. Он делал попытки доказать его справедливость, тем самым положив начало длинному ряду подобных же попыток позднейших геометров, пока Лобачевский не показал безуспешность таких доказательств, разъяснив их невозможность.
d. Папп
Последним крупным геометром Александрийской школы следует признать геометра III в. Паппа. Ему принадлежало, как полагают значительное число сочинении, из которых сохранилось лишь «Математическое собрание», да и то не в полном виде (из восьми книг этого сборника полностью утрачена первая и не хватает части второй).
«Математическое собрание» Паппа имеет для истории математики большое значение: оно содержит обзор трудов предшественников Паппа, развивает некоторые их идеи, комментирует эти труды. Благодаря этому для нас сохранились сведения о многих математических работах древних, которые не дошли в подлинниках до нашего времени.
Рассмотрим основные положения этого произведения. Но в то время как в произведении Герона сочетание это носит характер органической связи, в произведении Паппа -кабинетного ученого, на границе между античностью (закат которой он, как и многие его современники, уже ясно видит) и средними веками, это сочетание носит характер схоластической сводки. Как многие энциклопедисты III — V вв., Папп стремится собрать в одном грандиозном сочинении все, что ему кажется наиболее ценным из античного научного наследия, гибель которого он предчувствует. Поэтому "Собрания" Паппа, самое название которых говорит за себя, дают еще более пестрый, разнокалиберный и не связанный в единое целое материал, чем "Механика" Герона. В книге восьмой "Собрания", посвященной механике и дошедшей до нас, по-видимому, не полностью, эта пестрота сказывается особенно ярко.